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Run 1 detector simulation

« DO was an early and pioneering user of GEANT3 in a hadron collider
environment

— e.g. full simulation of missing E; for detector design studies in 1986
— Fortran 77 + ZEBRA used throughout DO code

— our own interface to event generators: started with ISAJET in early
1980’s

« GEANT3 was an appropriate tool for LEP; we
were pushing the envelope in trying to use it
for pp at 2 TeV

— one hour per event on a microvax Il in 1986

* Three levels of detail implemented in calorimeter sy
— full “plate level” simulation
— “mixture level” simulation
— shower library
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Detailled simulations: EM

* Exquisite level of agreement achieved between calorimeter testbeam
data and full simulation, for EM showers

— Electron beam scanned across one of the tie-rods in the EM
calorimeter - -
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Detalled simulation: hadrons

* The situation for hadronic showers was always a little harder to
understand

— choice of showering programs (GEISHA, FLUKA, etc) and need to
define tracking cutoffs

— 10% level discrepancy in response seen in central hadronic
calorimeter between MC and testbeam (normalized to EM);
endcap hadronic calorimeter well simulated
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Production simulation

« The CPU time for detailed simulation was always excessive; we

essentially never ran this way, except to derive tuning inputs and for
one jet corrections study in 1998

e Production running used mixture level simulation and shower library
— resolution and e/h tuned to match detailed simulation

 Non-calorimetric detectors were less well modelled
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Limitations

« Even running in “mixture level”, CPU time was always a concern
— we never really had enough Monte Carlo
— we used approximate techniques (shower library)

 So we never developed a great deal of trust in our MC

* Reliance (over-reliance?) on data to make corrections and derive
efficiencies
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Fast simulations

« To complement GEANT, we developed an array of ad hoc fast
simulations for cases where high statistics were a necessity

— W mass
— SUSY parameter scans

 Mainly tuned to data
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Monte Carlo jet energy scale

« When we derived our jet energy scale, we did it entirely from data
— photon + jet balancing
— resolution from dijet events

* Atleast some of us have developed a bit more confidence in the MC
approach since then

— e.g. reliance on MC for the k; jet E-scale 1999-2000

« HERWIG+GEANT MC doesn’t do too bad a job of describing the data
— Jet resolutions well modelled

— jet shapes and details of low-E response still hard to understand
* |low E hadrons, noise, and underlying event hard to disentangle
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Generators

 We never devoted a great deal of effort to understanding generators:
— how to tune them
— what their shortcomings are
— what are the systematic errors associated with each of them

« Typically might just run PYTHIA and HERWIG with default settings and
then compare (a similar approach to that used for PDF’s)

— top mass used ISAJET as a limit to how “different” things could be

SySLEmAtic error on m, Energy scale +4.0
Generator +4.1
Other - &

Resulting m, (GeV/c") 1733 + S6isat) + 6.2(svst)

We estimate the uncertainties in modeling of QCD by
substituting the 15AET MC generator [13] for HERWICG,
independently for top MC and for vECHOS fragmentation,
by changing the vicnos QCD scale from jet (p;)° w0
My, and by varying the amount of initial and final state
ghoon radiation i the top MC. The resulting systematic
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What's new in Run 27

o Still using GEANT3 detector description, wrapped in C++, with
digitization done in C++

« Continue with plate and mixture calorimeter simulation options, but no
shower library (no longer needed for speed)

» Cleaner event generator interface
* Added interface to unified, modularized fast simulation
 The biggest change is in sheer availability of CPU

— Can now generate ~ 1 million events per day and store in central
repository at Fermilab (SAM) via network or tape transfer

» similar rate to real data.
— Invites a change in the way we do analyses.
* But not yet really thought through the implications...
— e.g. cost of tapes >> cost of CPU!
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D@ Monte Carlo Production

 Plan to generate ALL MC events off-site:

— Currently 1 CPU can fully simulate and reconstruct ~500-1000 events/day
(3 min/event)

— Current D@ computational “Grid” ~500 CPU'’s
— Generate 50-100M events/year.

Location # CPU’s

NIKHEF 100

U. of Texas (Arlington) | 64

Lyon (CCIN2P3)* 100
Boston* 02000 (192)
Prague (Charles U.) 32 *Not Completely D@
Lancaster 200 :

Total Bandwidth to
Rio 100 (proposed) Fermilab ~ 5Mb/sec

 Some farms will be upgraded substantially this year/next year
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Open issues in generators

» For jet energy scale, big uncertainties to do with underlying event
modelling.

— How well is this done?
— How can we improve?

 Minimum bias events (multiple interactions per crossing)
— understand effects on missing E;
— particle multiplicities and energy flow (isolation, pattern recognition)

e Hadronization effects in jets
— shift energies by O(1 GeV) particle vs. parton

— May be important for top mass measurements in Run |lI; already
shift jet cross sections by 10-20%.
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Ratio of 3-jet/2-jet events at D@

20 GeV Inl< 3 Ry, vs Hy
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D@ p 4 measurement

 Phys. Rev. D61, 032004 (2000)

Low p. (<10 GeV)

resum large logarithms

of m,,?/p;2and include
nonperturbative parameters
extracted from the data
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Low E- rise In cross sections

« “k;” from soft gluon emission
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The challenge for Run 2

« Effectively exploit the dramatic increase in statistics available
— Monte Carlo as well as data!
Do not allow event modeling uncertainties to limit our physics
 Make use of the data we take to reduce these uncertainties
— perturbative QCD calculations
— production models
— PDF’s
— fragmentation
— underlying event and minimum bias

Will require an ongoing, open dialog between the experimenters and
the phenomenologists: hopefully this workshop can be start of such
a process
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An observation

« Event simulation is the link between experiment and theory: it is the
only way to test data against predictions

» But, despite its importance, it often seems rather neglected
— “not really experiment”
— “not really theory”
— no jobs, no future for the practitioners

« How can we improve the situation?
— changes in our institutional structures?
— changes in the way experiments are organized?
— Initiatives like CTEQ, Physics Frontier Centers?
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