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� Review of the tools used for the selection of tt events and the 
measurement of
� Tagging Algorithms 
� Cross-checks on independent data samples

Phys. Rev. D64:032002, 2001

� Assuming the Standard Model (i.e. using                     ), compare         
rates of various combinations of tagged W + jets  events to Standard 
Model expectations

� Describe the observation and characteristics of anomalous events found in 
the previous study

Phys. Rev. D65, 052007 (2002)

Outline of the talk

pbtt 54.11.5 ±=σ

ttσ
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� Kinematic cuts:
� One high ET lepton (e,µ)

• ET >20 GeV
• Central (| η | <1)
• Isolated

� ET > 20 GeV
� at least 1 jet  with ET >15 GeV and ||||η|  |  |  |  <2.0

� b-identification :                                    Efficiency
� SECondary VerTeX (SECVTX)              50%
� Jet-ProBability (JPB) 50%
� semileptonic decay   (SoftLeptonTagging ) 20%

Data sample : lepton + jet  events

b

b l

νq
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� The following processes have been considered:
� non-W background (estimated from data)
� mistags in the W+jet sample (estimated from data)
� Z → τ+τ− , tt, single top production, diboson production (estimated from simulation)
� Wc production (estimated from simulation)
� W +bb and W +cc production (estimated from simulation which is calibrated on data)
� Z + heavy flavor production (estimated from simulation and data)

� Mistags
Tags in jets without h.f.content. Estimated using parametrized probability functions 
derived in jet data. Error on mistag estimate 10%

� tt production
Use Pythia and the theoretical estimate of                    with 15% error

� Single Top
Use Herwig for W-g fusion and   NLO σ = 1.5 ± 0.4 pb 
Use Pythia for qq→W* →tb and NLO σ = 0.74 ± 0.05 pb

� Wc
gs → Wc and gd → Wc contributions are evaluated in Herwig. Uncertainty
dominated by the uncertainty in the strange sea content of the proton

Composition of W+≥1 jet sample

pb 5.1σ tt =
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� W/Z + g  (g→bb  or g→cc) 
The  major source of heavy flavor production in the W+jets tagged sample 
LO matrix element calculations have large uncertainty (~ 40%)

� Use number of  W events in the data before tagging in each jet bin and multiply
by the fraction of W+bb and W+cc events measured in the simulation.
No Monte Carlo describes the full phase space of the events

� VECBOS: 
Matrix Element MC
Requires cut-off values for parton PT and ∆R separation to regulate singularities
Heavy flavor partons are well separated resulting to separate jets
Interface with parton shower MC for initial final state evolution  

� HERWIG:
Parton shower MC
g → heavy flavor pair most often inside one jet

Gluon splitting uncertainty between 25% and 40% Requires calibrations
� Use combination of the two MC to obtain the W+h.f. event fractions

but calibrate these fractions using data

Composition of W+≥1 jet sample
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� JET50 and JET100 data sets are compared to Herwig simulations
(option 1500, generic 2→2 hard scattering, use MRS(G) PDFs)

� bb  and cc production are generated through processes of order αs
2

such as qq→bb
� Processes of order αs

3 are implemented through flavor excitation 
diagrams, such as gb→gb,  or gluon splitting, in which the process
gg→gg is followed by g→bb
� Gluon splitting comparable to the other production mechanisms

Calibration of the heavy flavor
content in the simulation

direct production + 
avor excitation gluon splitting

Sample b-jets c-jets g ! b�b g ! c�c Total

JET 50 2.14 � 10�2 3.04 � 10�2 1.67 � 10�2 3.79 � 10�2 10.64 � 10�2

JET 100 2.15 � 10�2 2.89 � 10�2 2.58 � 10�2 5.73 � 10�2 13.35 � 10�2
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Calibration of the heavy flavor 
content in the simulation

� Use kinematical differences to distinguish gluon splitting 
from other h.f. production mechanisms.

� Use ∆R (in η−φ space) to separate direct production 
and flavor excitation from gluon splitting 

� Use large jet multiplicity since relative rate of gluon 
splitting increases with jet multiplicity

� Fit simulation to data for
� tagged jets in events with one taggable jet
� tagged jets in events with one taggable jet and 

three or more jets (rich in gluon splitting)
� events with two tagged jets
� tagged events with a companion jet within ∆R<1.2
� double tagged events with a companion jet with ∆R < 1.2

� Use SECVTX and JPB tags in order to discriminate the 
flavor type (εc

JPB~2×εc
SECVTX)

Contributions and distances between 
2 tagged SECVTX jets in JET50 MC

Contributions and distances between 1 
tagged SECVTX jet and the closest jet with 
ET> 10 GeV in JET50 MC
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The fraction of g→bb and g→cc in the Herwig simulation needs
to be increased by (39±19)% and (35±36)% respectively
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Calibration of the heavy flavor 
content in the simulation

� Fit results:
� b,c direct production+flavor excitation σ weight   1.11 ± 0.16
� gluon splitting σ weight   1.36 ± 0.22
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� HERWIG tuning:
(Flavor excitation + Direct 
production) × (1.1±0.16)

� Corrections are of the same size as 
those measured by SLC and LEP

� Good description of JET 20 which 
was not used in the tuning

� SLT tags (not used in the fitting) 
are well described

� Supertag finding efficiencies are 
lower in the data than in simulation 
by (85±5)% independently of 
energy and flavor type

Cross check of the calibration

)19.04.1( ±×→ bbg
)36.035.1( ±×→ ccg
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� The numbers of  events with SLT and no SECVTX  tags are consistent with 
prediction. Most of these tags (~75%) are fakes.

� Clean sample: The composition of SECVTX tags is 70% b-jets and 20% c-jets
� The numbers of  observed and predicted  events with both SLT and SECVTX 

tags are not very consistent
Check the semileptonic BR of heavy quark jets by studying the fraction of 
SECVTX tagged jets which contain also a SLT tag (supertag)
� Expect 7% of SECVTX tagged jets to contain an additional SLT tag.
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Events tagged by SECVTX w/o supertags

� In the superjet sample the probability of consistency with SM in all jet bins is 0.4%
� In the njet = 2,3 bins the supertag sample has 13 events when 4.4  ± 0.6  are 

expected. The a posteriori probability of observing 13 or more events is P=10-3

� We define a complementary/control sample as the SECVTX tagged events which 
pass all cuts defining superjets + SLT candidate track inside the tagged jet.

� The complementary sample  has 43 events and 43.6 ± 3.3 are expected from S.M.
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Study of the kinematics
� If  the 13 events are a statistical 

fluctuation,   the  kinematics of this sample 
will be consistent with the S.M. simulation 
and the complementary sample

� We  chose two sets of 9 variables to look 
for differences

First set
� Studies d2σ / (dpT dη) for every  different 

object in the final state (8 var.)
� Replace E with the system l+suj+b
� Add the angle between the lepton and W

(check if events are consistent with the 
production and decay of  W bosons)

� This set of 9 variables fully describes the 
kinematics of the final state with modest 
correlations

� Compare distributions in the data and the 
SM simulation using a K-S test. Use the 
Kuiper’s definition.
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Azimuthal angle, δφ l,b+suj

� The probability distribution of the K-S 
distance, δ, is determined with pseudo-
experiments

� In each pseudo-experiment, we 
construct SM “running” templates 
which account for Poisson fluctuations 
and Gaussian uncertainties of each SM 
process

� From each “running” template we 
randomly generate a distribution with 
the same number of entries   of the data

� We then compare this distribution to the 
nominal SM template and derive δ
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18 Kinematical variables

� The complementary sample probabilities are flatly distributed
as expected we expected from simulation.

� All the probabilities of the superjet events  have low values

< P>=0.13 RMS=0.11 < P>=0.50 RMS=0.24
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Additional curiosities
� Compare to a SM simulation, in which 

the superjet transverse momentum 
distribution in each SM process has 
been sculpted to reproduce the data

� the usual K-S test yields  P= 0.1%
� A check for inadequate modeling of 

the hadronization process is provided 
by the pT
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Check of the fragmentation 
with generic-jet data

� 550,000 generic-jet events in the data 
and in the Herwig simulation 
(JET20, JET50, and JET100). 
� 1324 supertags in the data
� 1342 simulated supertags

� b-jets and c-jets are correctly modeled 
by the simulation
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Invariant mass of the 
two highest ET jets
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l,ET from W decay
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� weight the lepton polar angle distribution as  z4 = cos4 q in the rest 
frame of the initial partons

W→lν decay

WH
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Other distributions
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η− φ correlations of tracks
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